First Order ODE Solutions

Some equations can be solved using multiple methods

Separable P(x)dy + Q(y)dy = 0

Steps:

Set equal to each other and solve

Linear
$$\frac{dy}{dx} + P(x)y = f(x)$$

Steps:

Find integrating factor: $\mu = e^{\int P dx}$

$$\frac{d}{dx}[\mu * \mathbf{y}] = f(x) * \mu$$

Integrate both sides

$$\mu * \mathbf{y} = \int (f * \mu) dx$$

Exact M(x, y)dx + N(x, y)dy = 0

where
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Steps:

Find $\int M dx$ and $\int N dy$

$$\int Mdx + g(y) = \int Ndy + h(x)$$

Copy each unique component and set equal to C

Ex:
$$x^{2} + 2 + g(y) = x^{2} + y^{2} + h(x)$$
 (Don't copy the second x²)
=> $x^{2} + y + 2 = C$

Homogeneous M(x, y)dx + N(x, y)dy = 0

where *M* and *N* are to the same power

Steps:

y = ux $\frac{dy}{dx} = u\frac{dx}{dx} + x\frac{du}{dx} = > dy = udx + xdu$

or

x = uy

$$\frac{dx}{dy} = u\frac{dy}{dy} + y\frac{du}{dy} => dx = udy + ydu$$

Substitute for dy or dx

Becomes separable

Solve as separable equation

Bernoulli $\frac{dy}{dx} + P(x)y = f(x)y^n$

where $n \neq 0$ or 1

Steps:

 $u = y^{1-n}$

Solve for y

 $y = u^m$

Differentiate *y*: $\frac{dy}{dx} = m * u^m \frac{du}{dx}$

Substitute for *y* and $\frac{dy}{dx}$

Should become linear

Find integrating factor: $\mu = e^{\int P dx}$

$$\frac{d}{dx}[\mu * \mathbf{u}] = f(x)$$

Integrate both sides

$$\mu * \mathbf{u} = \int f(x) dx$$

Substitute y for u

Reduction to separation of variables $\frac{dy}{dx} = f(Ax + By + C)$

Steps:

Substitute u = Ax + By + C

Result is separable

Solve as separable equation

Substitute Ax + By + C for u