
Higher Order Homogeneous ODEs

Reduction of order

Given an equation in standard form:

𝑦'' + 𝑃(𝑥)𝑦' + 𝑄(𝑥)𝑦 = 0

And a first solution, a second solution can be found:
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Homogeneous Linear Equations with Constant Coefficients

Given an equation:

𝑦'' + 𝑃(𝑥)𝑦' + 𝑄(𝑥)𝑦 = 0

Find the auxiliary equation and solve for m:

𝑚2 + 𝑃𝑚 + 𝑄 = 0

If distinct roots:
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If repeated real roots:
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If complex conjugates, :α ± β𝑖
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Homogeneous Linear Equations With Special Cases (Superposition approach)

𝑦'' + 𝑃(𝑥)𝑦' + 𝑄(𝑥)𝑦 = 𝑓(𝑥)

Where

is a:𝑓(𝑥)

- Polynomial

- 𝑒𝑚𝑥

- sin/cos
- Any linear combination of the above

Steps:

Solve the associated homogeneous equation to find 𝑦
𝑐

Find associated with𝑦
𝑝
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Given 𝑓(𝑥) = 𝑐 𝑐𝑥 + 𝑐 𝑐𝑥 𝑥𝑐 or𝑠𝑖𝑛(𝑐𝑥) 𝑐𝑜𝑠(𝑐𝑥) 𝑒𝑐𝑥
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Check against the homogeneous equation and modify if necessary𝑦
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Differentiate and plug into the DE to solve A, B, C…𝑦
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Finally:
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Variation of Parameters

Can be used for any homogeneous linear equation

Steps

Put in standard form:

𝑦'' + 𝑃(𝑥)𝑦' + 𝑄(𝑥)𝑦 = 𝑓(𝑥)

Solve the associated equation:

𝑚2 + 𝑃𝑚 + 𝑄 = 0

To find:
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Compute cross products:
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Compute:
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Plug in:
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Finally:
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